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Abstract 

Background: Resistance to tooth movement is multifactorial, with friction (FR) one of many 

important components. There is limited data comparing contemporary Passive and Active self-

ligating bracket (SLB) systems in terms of FR created by archwire engagement. Aim: To compare 

classical FR in contemporary SLB systems and traditional twin brackets in vitro, and to identify 

the point of initiation of bracket-archwire engagement. Materials & Methods: Nine bracket 

systems of .022-in slot size were FR tested: Victory Series (3M Unitek) with elastic ligature 

(control); Passive SLB systems Damon Q (Ormco), Carriere SLX (Henry Schein), H4 (Ortho Classic), 

Altitude SL (Rocky Mountain Orthodontics, RMO), and Empower2 Passive (American 

Orthodontics, AO); Active SLB systems Victory Series SL (3M Unitek), Speed (Speed System 

Orthodontics), and Empower2 Active (AO). Single upper right central incisor brackets were 

mounted on a custom metal fixture and straight sections of various round and rectangular Nickel 

Titanium (NiTi) archwires (.016, .018, .018 x .018, .020 x .020, .016 x .022, .017 x .025, .019 x .025, 

and .021 x .025-in) were ligated to the bracket and FR was measured with an Instron Universal 

Testing Machine. Ten unique tests utilizing a new bracket and new archwire were conducted for 

each group in the dry state. Results: FR was significantly different between control, Passive SLB 

and Active SLB systems (p < 0.0001). Passive SLB groups had no mean difference of FR between 

bracket systems. Each Active SLB group exhibited significant mean differences in FR depending 

on the bracket system and archwire shape and dimension. Active SLBs possess a distinctly 

different pattern of initiation of FR engagement between bracket and archwire depending on the 

system. Conclusions: FR between the archwire and bracket slot differs between Passive and 

Active SLB systems. Understanding the different bracket-wire interactions of SLB systems helps 

the clinician understand and plan biomechanics with the bracket system of their choice.  

 

Keywords: Friction, Self-ligating brackets, Active, Passive, Orthodontics 
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Chapter 1 
Review of Literature 

 
1.1 Introduction  

In order to meet the expectations of the patient, orthodontic treatment must be efficient. 

The pursuit of an appliance that reduces treatment time has been the goal of orthodontic 

innovations since Edward Angle moved from a stiff wire E arch to a more flexible appliance in 

order to engage more teeth at the same time using the ribbon arch. The beginning of the modern 

era of orthodontics began with the introduction of the pre-adjusted straight-wire appliance from 

Andrews. Appliance design and treatment biomechanics are closely interrelated. The straight-

wire appliance minimized wire bending during finishing. However, it was soon recognized that 

new treatment biomechanics and force levels were required to treat cases effectively.1 With a 

similar thought process, the reintroduction of self-ligating bracket (SLB) systems has grown in 

popularity over the past two decades attempting to decrease friction and increase treatment 

efficiency. However, in order to express proper in-out, tip and torque prescription of the 

brackets, the archwire must also engage within the bracket slot. Thus, the use of clinical 

biomechanics varies between clinicians using different orthodontic systems due to force systems 

required by specific brackets. 

 

1.2 Friction 

Friction (FR) is the force resisting the relative lateral motion of elements in contact. It is 

derived from the electromagnetic force between charged particles. FR can be subdivided into 

dry, fluid, skin, and internal FR. In orthodontics, FR is determined by conditions of equilibrium of 

all the forces acting on the tooth-bracket-archwire complex. Only microscopic peaks called 

asperites make contact with one another when two solid surfaces slide across one another. This 

system is considered to be in the category of dry FR where two solid surfaces in contact resist 

relative lateral motion.2 Dry FR can further be classified as static or kinetic FR. Static FR is between 

two objects not moving relative to each other. Its magnitude is equal to that required to oppose 

motion until motion begins. Kinetic FR occurs when two objects are moving in relation to one 

another. Kinetic FR is usually less than static and it is less relevant in orthodontics since teeth are 
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not in continuous motion along an archwire.2 Teeth move at approximately 1mm per month 

which makes analysis of static FR more relevant in orthodontics.3 

Resistance to tooth movement involves more than FR alone. Nanda has described more 

than twenty variables and factors that affect this interaction in the mouth.4 Due to the complexity 

of interactions in tooth movement, in vivo measures of FR in the oral environment are difficult 

and rare. However, many in vitro studies have investigated key interactions and effects of bracket 

geometry,5,6 material properties,7,8 ligation method,9,10,11,12,13 tooth angulation,5,14,15,16 position 

of adjacent teeth,17,18 effect of saliva,7,19,20,21 and perturbation.22,23 Resistance to sliding (RS) is 

the effect of several of the above mentioned effects which become dominant at different angles 

of second-order rotation.24 

 

1.2.1 Orthodontic Resistance to Sliding 

Kusy and Whitley5,7 propose that RS is a combination of simple classical FR, binding (BI), 

and notching (NO) expressed as, Equation 1: 

Equation 1:  RS = FR + BI + NO 

In this case, FR will occur at tip angles less than 3.7 and is due to FR caused by ligation of the 

wire into the bracket slot.5 When the tip angle exceeds the critical value of 3.7, BI is the 

dominant interaction where FR increases due to the wire contacting the opposing mesial-distal 

edges at the end of each slot. These opposing forces create a moment and FR becomes a product 

of the tip angle of the bracket to the wire as well as the bracket width. As bracket width decreases 

for a given couple, the FR force increases. High angles of tip will cause physical interlocking of the 

wire and bracket, caused by permanent deformation of either surface that will cause a very high, 

non-FR based resistance called NO. At this point, RS increases unpredictably to an extent that at 

such angles sliding ceases.24 It has been long known that RS increases as the contact angle 

between bracket and archwire increases.25 Thorstenson and Kusy calculated that for a 0.018 x 

0.025-in stainless steel (SS) archwire, an activation of 6 was clinically most relevant, since 

beyond that angle, archwire uprighting forces would cause the tooth to “walk” along the archwire 

in a series of binding and releasing movements around this angle.8,13,21 BI has been found to equal 
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or exceed FR once angulation exceeds 3. Studies demonstrate that BI can contribute up to 80% 

of RS at 7 angulation and 99% at 13 for stainless steel archwire with a ceramic bracket.16  

 

1.3 Ligation 

1.3.1 Conventional Elastomeric Ligation 

Orthodontic treatment with a fixed appliance involves the use of metal, ceramic, or plastic 

brackets in combination with metal archwires. The archwire is affixed into the bracket slots with 

ligatures around tie wings. Historically, the archwire was ligated to each bracket with SS wire, 

however, alternative methods were developed due to the length of time these ligatures took to 

place. A biocompatible elastomeric polymer in the shape of a circular ring was developed by Drs. 

Anderson and Klein in the late 1960’s to ligate the archwire to the bracket.26 Elastomeric ligatures 

were quickly accepted and adopted into practice due to their ease of placement and reduction 

of required chair time. Due to the high coefficient of FR between polyurethane ligatures and 

metal archwires, alternative designs have been developed in order to facilitate reduced 

movement of archwire along the brackets. Development of low FR elastomeric ligatures has been 

attempted with hydrophilic coatings, injection silicone molding, and altering the shape of the 

ligatures in order to decrease the coefficient of FR. The Slide ligature (Leone Orthodontic 

Products, Sesto Fiorentino, Firenze, Italy) is one such nonconventional elastomeric ligature that 

is manufactured with a special polyurethane mix by injection molding. When attached to an 

orthodontic bracket, its shape allows the archwire to passively slide through the slot with 

reduced frictional resistance.  

 

 1.3.2 Self-ligation 

In the mid-1930s, SLBs were first introduced in the form of the Russell attachment by 

Stolzenberg.27 The bracket had a flat-head screw which seated the archwire in its slot as the 

threaded screw tightened into the circular face of the bracket. The Russell attachment allowed 

the bracket to act in either the active or passive state depending on if the screw completely 

seated the wire against the base of the slot (active) or allowed it to move freely within the slot 
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(passive). The core features of SLBs include security of ligation, rapid archwire changes and lower 

RS (Figure 1).  

 

 
A    B    C 

Figure 1: A. Traditional twin bracket (Victory Series, 3M Unitek); B. Passive SLB characterized by 
sliding door mechanism (Damon Q, Ormco); C. Active SLB characterized by sliding clip mechanism 
with an archwire range that can be passive within the slot or engaging the clip in active phase 
(Speed, Speed System Orthodontics). 
 

 

Contemporary SLBs contain an integrated mechanism to attach an archwire. “Active” SLBs 

often utilize a clip ligation mechanism to engage the archwire into the slot while “Passive” SLBs 

utilize a door ligation mechanism that allows the archwire to be free within the slot. Passive SLBs 

make any BI component a high percentage of the overall RS. In Passive SLBs, the FR is usually 

close to zero making the BI component constitute essentially 100% of the resistance to sliding.28 

Studies of initial aligning wires placed in irregularly aligned brackets have shown large reductions 

in RS with SLBs in all 3 planes of space.12,17,29 Many claims regarding the advantages of Passive 

SLB orthodontic appliances have been made, primarily regarding reduced treatment time due to 

less FR and lower force systems. Due to the complexities and vast combination of factors that 

interplay during orthodontic movements, the vast majority of in vitro studies simplify their 

methodology to record one-dimensional frictional data. 

 

1.3.3 Reduced Resistance to Sliding in Self-ligating Brackets 

There are no current in vivo studies of FR between bracket and archwire. However, many 

in vitro studies have addressed the question of FR between bracket and archwire. Franchi et al.12 
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reported lower FR for Passive SLBs Carriere SL (Henry Schein), Damon 3MX (Ormco), and 

nonconventional elastomeric ligatures (Slide, Leone Orthodontic Products) on a conventional 

bracket system compared to twin edgewise brackets tied with conventional elastomeric 

ligatures. A recent systematic review,9 demonstrated multiple studies indicating that the Damon 

II SL (Ormco) bracket possesses lower FR resistance than conventional bracket 

systems.30,31,32,33,34,35 Early on, Loftus et al.36 concluded that FR forces of Damon SL brackets were 

similar to that of traditional twin metal or ceramic (with steel slot) brackets. Henao and Kusy37,38 

demonstrated Damon II SL brackets produced significantly diminished FR than conventional 

brackets on small round archwires and greater FR on rectangular archwires. Similarly, Griffiths et 

al.39 described Damon brackets having lower RS compared with ceramic conventional brackets. 

Tecco et al.40 reported Damon II SL brackets having lower FR than that of conventional brackets, 

but similar to conventional brackets with nonconventional elastomeric ligatures (Slide) on .016 

NiTi archwires. Interestingly, as archwire changed to rectangular and increased in diameter, the 

nonconventional ligatures produced less FR compared to Damon brackets and traditional 

brackets with conventional elastomeric ligatures. A comparison between the Passive Damon 

3MX SLB and Active SLBs (Speed, Speed System Orthodontics; In-Ovation R, Dentsply GAC; Time 

2, AO) demonstrated that the Speed SLB had the greatest amount of frictional forces with 

multiple round and rectangular wires, while often there was no significant difference in FR forces 

between Damon 3MX, Time 2, and In-Ovation R bracket systems.41 Additionally, a study 

comparing FR of Passive Damon 3MX SLB, Passive Smartclip (3M Unitek), Active Empower SLB 

(AO) and conventional twin orthodontic brackets (AO) with elastomeric ligatures on .016-in NiTi 

and .019 x .025-in SS, demonstrated that the Damon 3MX showed significantly less FR than other 

groups on both archwires.42 

Distinctly different force distributions have been found to exist between SLBs and 

conventional brackets with various 3-dimensionally simulated malocclusions. Force distributions 

using simulating modeling have found Passive SLBs to demonstrate small force vectors of 

posterior teeth in a distal buccal direction compared to large force vectors of the anterior teeth 

in a buccal direction with conventional brackets.43,44,45,46,47,48 The reduced RS in SLB systems is 

hypothesized to minimize incisor flaring during alignment by increasing arch perimeter with distal 
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buccal movement of posterior teeth. A study comparing pre- and post-treatment models treated 

with Damon 3MX and a conventional edgewise appliance (Dentsply GAC), using different 

archwire materials and sequence, observed significantly more transverse expansion from the 

canines to molars and similar incisor proclination, post-treatment with the Damon system.49 This 

study did not support the hypothesis that incisor flaring can be reduced with posterior teeth 

augmented in the distal buccal direction. However, it would be surprising if these marked 

differences in force distribution resulted in no clinical consequences. 

 

1.4 Reported Advantages of Self-ligating Brackets 

Several consecutive case series studies found that treatment with SLB systems was 

quicker, less painful, and required less visits while providing similar alignment and occlusion as 

conventional systems.9,50,51,52 However, other similar studies,49,53,54 and many randomized 

controlled studies,55,56,57,58,59,60 have found no difference in terms of treatment time or pain 

between SLBs and conventional brackets in various points of the treatment process. Recent 

systematic reviews looking at the summary of claims versus evidence concluded that SLBs do not 

reduce overall time in treatment or pain.61,62 However, SLBs were found to save on average 

twenty seconds per arch in chair side ligation time, and have a final mandibular incisor alignment 

inclination of 1.5 less than conventional systems for treatment.63  

 

1.5 Stages of Orthodontic Treatment 

Raymond Begg suggested that comprehensive orthodontics could be sequentially divided 

into three major stages of treatment.64 The stages are: (1) alignment and leveling, (2) correction 

of molar relationship and space closure, and (3) finishing. During the first stage of treatment, 

alignment and leveling, an initial archwire should be placed that will provide light continuous 

force to produce the most efficient tipping tooth movements.65 Heavy forces are avoided and as 

such, light resilient round archwires made from superelastic NiTi are often utilized. The initial 

wires bring the malposed teeth into the arch and are progressively changed to larger dimension 

wires to level the arches into a flat plane. Root movement is not needed in this stage, and thus, 

rectangular archwires are normally avoided. Proffit65 states that the archwire should be able to 
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move freely within the bracket during this stage. Since the tooth movements required at this 

stage are optimized by wires that are free to move in the bracket slot, low FR levels are a 

characteristic that would enhance this stage of orthodontic treatment.  

The second stage of treatment is concerned with obtaining an optimal occlusion of buccal 

segments in the anteroposterior plane of space while closing extraction or residual spaces in the 

arches. As previously mentioned, space closure involved with sliding mechanics involves RS which 

is comprised of the total effects of FR, BI, and NO. It has been contested that BI is the major 

contributor to RS in Passive SLBs only because FR is essentially zero.28 Regardless of which is the 

primary determinant of RS, FR plays a partial role in the second stage of orthodontic treatment 

where minimal RS forces are optimal. 

The final stage of orthodontic treatment, finishing, is characterized by root movement to 

obtain ideal torque as well as adjustments of individual teeth to obtain ideal relationships that 

may be lacking due to discrepancies produced in either bracket placement or appliance 

prescription.65 A characteristic of this final stage is the engagement of large square or rectangular 

archwires such that the built-in prescription of the orthodontic bracket can be expressed. For this 

to occur, the wire must be fully engaged within the slot of the orthodontic bracket, as opposed 

to the first stage of treatment, where archwire play was desirable. Thus, high FR values would be 

representative of this stage if a full expression of the bracket prescription is desired. As such, 

comprehensive orthodontic care is often characterized initially by low force levels with smaller 

FR values and progresses to finishing stages that requires greater control with bracket-wire 

engagement with higher FR values. 

 

1.6 Bracket-Wire Engagement 

The engagement of the bracket-archwire complex is a critical component of orthodontic 

biomechanics and tooth control. Rapid initial alignment will occur with low forces generated 

between the bracket and wire. FR-free mechanics can be achieved using loosely tied SS ties to 

twin brackets or with SLBs.66 In the straight-wire technique, orthodontic brackets are 

programmed with first- (horizontal labio-lingual in-out, rotational), second- (vertical mesial-distal 

tip/angulation) and third- (labio-lingual root/crown torque) order prescriptions which are 
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expressed with the interaction between bracket and archwire. This interaction is dependent on 

wire geometry and size. The freedom between the bracket slot and archwire is known as “play”. 

In order to express first- and third-order prescription, the bracket closure mechanism 

must hold the archwire against the base of the slot. Otherwise, should the archwire be in a 

passive position, the in-out, rotational, and torque component of the bracket prescription will 

not be realized (Figure 2). For good first- and third-order control, the bracket closure mechanism 

must hold the archwire against the base of the slot. Engagement of the archwire in the bracket 

slot by ligation methodology develops FR but does not affect BI or NO. BI and NO is a component 

of second-order prescription, which is affected by bracket width, inter-bracket span, wire size, 

and material composition rather than by ligation method.67 

When an undersized archwire is inserted into a bracket slot, the wire can rotate clockwise 

or counterclockwise around the long axis of the archwire.68 In an .022-in bracket slot, a .019 x 

.025-in working wire will have 9° of play before third-order engagement will occur.69 Additional 

torque is built into the bracket prescriptions such that an ideal resultant torque will be expressed 

with commonly utilized finishing archwires. For the clinician utilizing SLBs, it is important to have 

a thorough understanding of wire engagement for improved control and finishing. 

 
 

 
 
Figure 2: A. Victory Series bracket with representative elastomeric ligature pressing a 
hypothetical rectangular archwire into base of slot; B. Passive Damon Q bracket showing first-
order play; C. Active Empower2 bracket with archwire pressed into the base with active clip. 
 

 

Since the development of SLBs, there has been a debate over whether they should have 

an active or passive ligation mechanism. Proponents of an active clip suggest that it provides a 

A C B 
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‘homing action’ on a deflected wire and provides more control with the appliance.70 Active SLBs 

typically have a passive slot depth ranging between .0175 to .020-in. With small round wires, the 

bracket is passive, but with larger wires the flexible clip seats the archwire to the base of the 

bracket slot. Passive SLBs typically have a slot depth of 0.028-in and do not force the wire to the 

base of the slot. It has been suggested that Passive SLBs produce less FR, which may result in 

decreased control compared to Active SLBs.71 A study examining two Active (In-Ovation and 

Speed) SLBs and two Passive (Damon 2 and SmartClip) SLBs found active brackets expressed 

greater torque values than Passive SLBs due to the active clip forcing the wire into the bracket 

slot.72 In this study, the clinically applicable range of torque activation was greater for the Active 

SLBs than for the Passive SLBs. The study of bracket-archwire engagement primarily examines 

third order torque control by defining engagement angles on large dimension rectangular 

archwires.71,72 An in-depth understanding of bracket-wire FR in terms of initiation of Active SLB 

wire-engagement may assist the clinician in understanding when first and third order 

prescription is starting to express. Due to the large volume of orthodontic bracket systems and 

archwire combinations, a comprehensive understanding of bracket-wire engagement is lacking.  

 

1.7 Methods to Study Orthodontic Friction 

FR can be a simple element of orthodontics to investigate. However, FR which simulates 

the true intraoral 3-dimensional interactions is very difficult to measure. Due to simple design, 

the vast majority of research consists of in vitro studies to eliminate compounding variables, but 

leave numerous limitations.2 Most studies utilize passive systems to investigate FR where the 

effects of BI and NO have been removed. These studies mount brackets so that the wire is pulled 

through a parallel slot without introducing angulation between wire and bracket (Figure 3). These 

studies measure the amount of FR between the wire, bracket, and the ligation device. However, 

the limitations to this study methodology are that brackets are seldom placed in passive positions 

relative to one another in clinical conditions. 

Active in vitro investigations study FR with varied angulations between archwire and 

brackets in relation to each other. Studies utilizing 2-dimensional and 3-dimensional FR with 

varied degrees of displacement have been completed. Recognized limitations include the 



 

 

10 

inability of the malaligned brackets to move and the inability to measure forces at individual 

teeth.12,35 

 

A                                                    B  
 
Figure 3: A. Set up of passive in vitro FR study3; B. Passive in vitro FR study utilizing multiple 
aligned brackets.6 
 

 

Recently, a 3-dimensional orthodontic simulator (OSIM) was developed capable of 

accurately measuring forces and moments applied by orthodontic fixed appliances on up to 14 

teeth simultaneously. The OSIM utilizes six-axis load cells to measure forces and moments on 

individual teeth. The OSIM is used to model and measure the simultaneous force and moments 

of full arch continuous archwire systems. A study by Badawi et al.43 was designed using the OSIM 

specifically to examine the force system at the bracket-wire interface with an emphasis not to 

simulate the oral environment. The authors noted that this model does not control for intraoral 

variables such as moisture, occlusion, lip pressure, tongue pressure, PDL compliance, alveolar 

bone level and geometry. The same research group also developed an orthodontic FR simulator 

to specifically examine sliding mechanics.24 In this model, the six-axis load cell measures forces 

and moments on an individual bracket during archwire sliding and second order rotations.  

 
1.8 Summary of Issues 

The relevant literature of studies examining the magnitude of forces developed during 

engagement of archwires into the slot of conventional and SLBs is limited.48 Many FR studies exist 

for conventional twin, Passive and Active SLB systems. However, the majority of previous 
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research examines a comparison of either twin brackets to Passive Damon SLBs or compares 

Passive Damon SLBs to Active SLB alternatives (Speed, In-Ovation, Empower) without including a 

conventional twin bracket to give a gauge of relativity of the forces. Additionally, due to the large 

volume of potential bracket-archwire combinations, the majority of studies either limit their 

study to looking at only a few bracket systems, or only utilize a few sizes of archwires. One of the 

most inclusive FR studies examined two Passive and two Active SLBs with a conventional twin 

control, but were only able to compare seven of twelve archwire combinations suggested by each 

bracket manufacturer.38 By not examining the same wires between groups, it makes it difficult to 

compare bracket systems to one another. Additionally, bracket systems are continuously 

changing and there is no current data regarding a comparison of contemporary Passive Damon 

Q (Ormco) to many of the alternative contemporary Passive and Active SLB systems (3M Unitek 

Victory Series SL; Ortho Classic H4; Henry Schein Carrier SLX; AO Empower2; RMO Altitude SL; 

Speed System Orthodontics Speed) on varied small to large round, square and full size 

rectangular archwire. 

 

1.9 Purpose of Current Investigation 

The purpose of the current investigation is to compare classical FR between 

contemporary SLB systems and traditional twin brackets in vitro. This information will help to 

identify the point of initiation of bracket-archwire engagement for tested SLB systems. 

 

1.10 Hypothesis 

• Passive SLB systems are not different compared to one another in terms of FR, but have 

less FR than Active SLBs and conventionally ligated brackets.  

• Active SLB systems produce differing amounts of FR compared to each other on varied 

wire sizes and dimensions. 
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Chapter 2 
Materials and Methods 

 
2.1 Orthodontic Brackets 

Nine bracket systems of 0.022-in slot size were tested. The control was a Victory Series 

twin bracket with elastomeric ligature (item #854-660; AO); Passive SLBs included, Damon Q, 

Carriere SLX, H4, Altitude SL, and Empower2 Passive; Active SLBs included, Victory Series SL, 

Speed, and Empower2 Active (Table 1). Brackets were chosen from well-known orthodontic 

manufacturers based on bracket popularity, availability, and lack of previous published FR 

literature. The bracket prescription utilized was the most popular available in the specific system 

being tested. 

 

 
Table 1: Investigated orthodontic brackets and archwires. 

 
 

2.2 Imaging Bracket Morphology 
 

Prior to FR testing, morphologies of the brackets were examined using a scanning electron 

microscope (SEM; Zeiss 1540XB) at 20 keV and recorded as micrographs and analyzed with Zeiss 

SmartSEM (Carl Zeiss Microscopy GmbH; Jena, Germany). Four new brackets from each system 

were cleaned with acetone and 95% ethanol and mounted on studs using carbon adhesive tabs. 

Side-view micrographs of the brackets taken at 75X magnification were utilized to measure the 

minimum slot height and depth.  

 



 

 

13 

2.3 Friction Testing  
 

All as received brackets were mounted onto transfer mounting pins using the custom 

fabricated bracket mounting jig displayed in Figure 4. Single upper right central incisor brackets 

were mounted on transfer pins with Assure Plus (item #PLUS; Reliance Orthodontic Products) 

and Transbond XT (item #712-031; 3M Unitek) adhesive, allowing an .0215 x .025-in SS wire to 

passively fit (item # 03 125-58; GAC International) to negate tip and torque variation between 

bracket systems.  

 

 
Figure 4: Custom fabricated bracket mounting jig with fixed mounting archwire and removable 
transfer bracket mounting pin. 
 
 

Transfer pins were moved to a custom fabricated Instron mounting fixture as in Figure 5. 

Straight sections of various round, square and rectangular austenitic NiTi archwires (Table 1) 

were secured on-center to the archwire mounting clamp. Prior to use, archwires were measured 

with a digital caliper (item #0400-EEP; Ortho-Pli) and were all consistently 0.001-in less in 

dimension than reported by the manufacturer. Wires were ligated to the brackets and FR was 

measured with an Instron Universal Testing Machine (Instron Model #3345; Norwood MA, USA) 

with Series IX/s Software (Instron; Norwood MA, USA). All as received brackets and wires were 

handled with gloves such to not introduce contaminations.  
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Figure 5: Digital model of custom fabricated Instron mounting fixture, A. Frontal view of archwire 
mounting clamp holding centered wire to transfer mounting pin with bracket mounted on 
custom Instron mounting fixture, B. Side view of custom set up, C. Instron testing machine with 
bracket mounting fixtures, D. 
 
 

 

Figure 6: Typical FR plot of force versus displacement for two experimental runs. The black arrow 
denotes possible peak static FR and the red arrows denote the recorded maximum FR values. 
 
 

The Instron testing machine was employed with a 10 N load cell that was set on a range 

from 0 to 5 N to determine the FR force levels. In order to improve recordings of low FR values, 

the archwire mounting clamp was designed to incorporate an additional mass of 295.5 g (~3 N) 
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which was then calibrated such that recordings would produce true values. FR was recorded in 

centiNewtons (cNs) noting that 1 cN equals 1 g. As described by Tecco et al.,73 each wire was 

pulled through the bracket slot by a distance of 0.25mm at a speed of 0.5mm per minute and the 

maximum value was recorded. Our initial goal was to measure peak static FR; however the peak 

static FR value was not always discernable at low force levels (Figure 6). As such, the maximum 

force value was chosen instead of peak static FR as described in other reports.73,74 After each test, 

the Instron testing machine was stopped, the transfer mounting pin turned to a new bracket, 

used archwire cut, and upper unit lowered so that the wire could be ligated to the new bracket. 

Ten unique tests utilizing a new bracket and new wire segment were conducted for each group 

in the dry state as suggested in previous studies.20,21,24 

 
2.4 Data Analysis 

Descriptive statistical information, including mean and standard deviation (SD) was 

calculated for each bracket-archwire combination. Once it was recognized that the two largest 

wires produced essentially no FR with the Passive SLBs, smaller wires were deemed unnecessary 

to test. The FR values were analyzed with statistical software (SPSS Statistics 23.0; SPSS, Inc., 

Chicago, IL) using two-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple 

comparisons to compare significant differences between groups (P < 0.05). Independent 

variables (bracket and archwire) did not possess an interaction with one another (P > 0.05). 
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Chapter 3 
Results 

 
3.1 Imaging Orthodontic Bracket Morphology 

Imaging of brackets (Figure 7) with SEM allowed accurate measurement of slot 

dimensions (Figure 8) in the closed-door state as described in Table 2. The manufacturer reported 

slot dimensions for all brackets was .022 x .028-in, except for the P-H4 bracket which the 

manufacturer reports to have an .022 x .026-in slot size. SEM measurement at 75x magnification 

showed the P-H4 brackets to possess a .022 x .028-in slot size rather than the manufacturer 

claimed dimensions. Additionally, the P-Alt brackets appear to have larger slot dimensions than 

reported with greater variability than other Passive SLBs. The remaining brackets were very close 

in dimension to those reported by the manufacturers. 

 
 

 
 

Figure 7: SEM imaging at 25x magnification of P-Dmn, A; P-Car, B; P-H4, C; P-Alt, D; P-Emp, E; C-
Vic, F; A-Vic, G; A-Spd, H; A-Emp, I.  
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D 
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E 
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Figure 8: SEM imaging at 75x magnification for measurement of P-Dmn slot dimensions. 
 
 
 

Bracket Group 
Minimum Slot 

Height (in) 
Minimum Slot 

Depth (in) 

P-Dmn 0.0231 ± .0001 0.0282 ± .0002 

P-Car 0.0231 ± .0003 0.0307 ± .0002 

P-H4 0.0234 ± .0002 0.0285 ± .0001 

P-Alt 0.0243 ± .0006 0.0326 ± .0005 

P-Emp 0.0234 ± .0001 0.0264 ± .0003 

C-Vic 0.0232± .0004 0.0253 ± .0006 

A-Vic 0.0237 ± .0001 0.0189 ± .0004 

A-Spd 0.0230 ± .0001 0.0153 ± .0006 

A-Emp 0.0231 ± .0001 0.0140 ± .0003 

 
Table 2: Minimum bracket slot height and depth measures from SEM at 75x magnification. Data 
are mean measurement values ± SD, n = 4 for each bracket.  



 

 

18 

 

3.2 Friction 

Passive SLB groups had minimal FR with significantly (P < 0.001) lower mean FR than 

control C-Vic brackets (Figure 9). Passive SLB groups demonstrated no significant (P > 0.05) 

differences of mean values between systems regardless of archwire (Figure 9). Passive SLBs 

demonstrated significantly lower mean FR than all Active SLBs with .019 x .025 and .021 x .025-

in NiTi wires (P < 0.001).  

 

 

 
Figure 9: Minimal FR forces measured across all Passive SLB groups. Data are mean FR values ± 
SD, n = 10 for each bracket/wire combination. Non-significant differences at P > 0.05 between 
brackets by two-way ANOVA with Bonferonni post hoc test are denoted by the same letter. 
 
 

Active SLB groups exhibited significant mean differences in FR compared to control C-Vic 

brackets (P < 0.01) on every archwire as well as distinctly different patterns of mean FR compared 

to each other, depending on archwire shape and dimension (Figure 10). All Active SLBs 

demonstrated significantly less mean FR than controls until the .019 x .025 and .021 x .025-in NiTi 

wires (Figure 10). Compared to controls on these archwires, the FR levels are maintained at 

significantly diminished levels for the A-Vic and A-Spd brackets, while the A-Emp bracket forces 

were significantly increased (Figure 10).  
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Figure 10: Comparison of FR between control brackets and Active SLBs on varied archwires. Data 
are mean FR values ± SD, n = 10 for each bracket/wire combination. Non-significant differences 
at P > 0.05 between brackets by two-way ANOVA with Bonferonni post hoc test are denoted by 
the same letter. 
 

 

All Active SLBs demonstrated minimal FR values on each tested round archwire (Figures 

10 & 11). Compared to the .016 NiTi wire, the A-Vic bracket had no mean significant increase in 

FR engagement when changing from round to square archwire but began to exhibit a distinctly 

significant increased FR beginning on .017 x .025-in NiTi (Figure 11). Compared to the .016 NiTi, 

the A-Spd bracket-wire engagement initiates significant mean increase in FR on the .018 x .018 

and .016 x .022-in NiTi (Figure 11). Compared to the .016 NiTi, the A-Emp bracket-wire 

engagement initiates distinctly significant mean increases in FR on the .020 x .020, .017 x .025, 

and .019 x .025-in NiTi wires (Figure 11). 
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Figure 11: Comparison of FR between archwires on control brackets and Active SLBs. Data are 
mean FR values ± SD, n = 10 for each bracket/wire combination. Non-significant differences at P 
> 0.05 within each bracket system by two-way ANOVA with Bonferonni post hoc test are denoted 
by the same letter. 
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Chapter 4 
Discussion 

 
The aim of this investigation was to identify and compare the differences in classical FR of 

contemporary SLBs to traditional twin brackets, and in doing so, identify bracket-archwire 

engagement points for SLB systems. Unlike existing studies that have examined FR, this 

investigation explored a more extensive collection of current contemporary SLB manufacturers 

with a large variation of archwires. This is important to the clinician who utilizes any of the studied 

bracket systems for planning biomechanics and utilizing the prescription of the orthodontic 

system in finishing. 

 

4.1 Orthodontic Bracket Morphology 

Examination of the bracket morphology suggests that bracket quality in terms of precision 

is very good in general but can be varied. Our initial assessment of bracket morphology found 

that the P-Alt had a mean dimension of .024 x .033-in rather than .022 x .028-in suggested by 

RMO. The SEM micrographs visually demonstrate that there appeared to be variation in the 

position of the bracket slot insert on the P-Alt brackets, in terms of depth of seating, which likely 

lead to such discrepancy in slot dimension. Additionally, the P-H4 bracket is reported to be .022 

x .026-in, while mean measurements of .023 x .028-in were observed. This suggests that there 

may be greater slot tolerances in this bracket than previously thought. Reports examining SLB 

slot heights suggest a considerable variability of between 3% to 15% larger slot sizes than nominal 

values from the manufacturer.75,76 Consistent with existing literature, our findings observed 

variability in the slot tolerances. However, this did not seem to affect their performance since FR 

was similar among all of the tested Passive SLBs. 

 

4.2 Methodology to Study Orthodontic Friction 

The brackets in this study were mounted in a manner to zero the tip and torque of the 

brackets such that classical FR described by Kusy5 could be examined without introducing BI or 

NO effects. Passive in vitro FR studies are advantageous when determining the amount of FR 

contributed by the wire, bracket, and ligator without other variables involved. The variables 
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considered in this study included archwire dimension and shape as well as bracket system and 

bracket ligation modality. BI and NO are components of second-order movement, of which, 

ligation device has little effect.2,77 

There exists no gold standard of methodology to study orthodontic FR. A linear model 

was chosen for this study since the primary purpose of this examination was to study classical FR 

between SLBs and archwire and to remove as many confounding variables as possible. In trial 

runs, it was quickly recognized that precision bracket mounting would be necessary in order to 

conduct a FR study that examined very low force levels. Similar to previous reports, a custom 

fabricated mounting apparatus was constructed both to mount the brackets and to conduct this 

study with the Instron Universal Testing Machine.3,6 Additionally, a 10 N load cell was utilized to 

measure and record force values. Our initial pilot studies revealed that FR measurements found 

in this study (0.4 – 200 cN) were not producing smooth curves, and rather appeared like noise 

and variability. Alternative options of obtaining a 5 N load cell or fabricating a custom load cell 

were contemplated in order to address the issue of accurately recording low force values. The 

challenge was ultimately addressed by adding 295.5 g (approximately 3 N) to the upper clamp 

apparatus connected to the load cell. This effectively made it such that the load cell did not have 

to measure force levels at the lower limit of its capabilities. 

The crosshead speed of 0.5mm/min was based on the work of Tecco et al.6,31,40 allowing 

adequate acquisition of data points. Analysis of static FR is more relevant in orthodontics since 

teeth move at such a slow rate.3 However, the peak between static and kinetic FR was not always 

discernible, particularly with the Passive SLBs recording means between 0.4 – 1.6 cN. Similar to 

other studies examining FR values very close to zero in SLB systems, we recorded maximum 

kinetic FR values rather than peak static FR values.73,74 However, it appears in our study that there 

was very little relevant difference between peak static FR and maximal kinetic FR from a clinical 

perspective.  

This current FR study was conducted in the dry state. Previous studies have found that 

artificial saliva was not a good substitute for human saliva.20 Additionally, the utilization of saliva 

was found not to significantly influence the loads generated during sliding mechanics regardless 

of ligation method.20,21,24 
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It has been reported that FR tests with elastomeric modules can be repeated five times 

using the same ligature with no statistical difference in FR.78 Additionally, it has been shown 

previously, that multiple testing has no adverse effects on bracket-wire couples.79 Moreover, a 

recent orthodontic FR study found no differences on analysis of force displacement data with the 

multiple reuse of orthodontic brackets with new wires.80 However, in the present study, each 

test was repeated 10 times with a new bracket and new wire segment in an effort to improve 

reproducibility due to the multiple variables being examined which is consistent with other 

previous reports.10,30,41  

 

4.3 Friction 

A direct comparison of the various studies on the topic of FR would be complex due to 

differences in experimental settings, acquisition systems, points of force application, and 

differences in bracket-wire angulations.30 Ideally, a gold standard in orthodontic FR testing would 

be established similar to that proposed by Fathimani et al.24. However, this proposed 

methodology has not been universally accepted in published literature and does not have wide 

spread utilization. Previous studies utilizing single bracket FR testing in a linear system have 

reported similar ranges of FR values. Similar to our control findings, Cacciafesta et al.30 reported 

that .022 Victory Series kinetic FR values ranged between 45 to 70 cN on .016 and .019 x .025-in 

NiTi, respectively. Additionally, in concordance with our findings, Thorstenson and Kusy8 

reported that using .016 x .022 and .019 x .025-in NiTi, FR of Speed Active SLBs was 60 and 72 cN, 

respectively. Moreover, similar to our findings on Passive SLBs, Thorstenson and Kusy8 also 

reported that the FR of Damon 2 brackets was 0.15 cN on .019 x .025 NiTi. 

In agreement with the hypothesis, this study indicates that both Active and Passive SLB 

systems produce different degrees of FR and in differing amounts on varied archwire sizes and 

dimension. The current study revealed that all examined Passive SLB systems had low levels of 

FR on full size NiTi wires. Once these findings were observed with the .019 x .025-in NiTi and 

confirmed with .021 x .025-in NiTi, then a decision was made to not test smaller archwires on the 

Passive SLBs as they would also be near zero. These finding are consistent with Franchi et al.12 

who reported lower FR for Passive SLBs Damon 3MX (Ormco) and Carriere SL (Henry Schein) 
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compared to twin edgewise brackets tied with conventional elastomeric ligatures. Conversely, 

Henao and Kusy,37,38 reported that Damon II SL brackets produced diminished RS compared to 

conventional brackets on round wires, but greater FR on rectangular archwires. The Henao and 

Kusy studies,37,38 utilized a mounted typodont and pulled preformed NiTi archwires through 

misaligned brackets to test RS which includes the effects of BI, NO as well as FR. Unlike the Henao 

and Kusy studies,37,38 our research was focused on measuring classical FR by utilizing a linear 

study model. It has been shown that Damon 3MX SLB have less FR on .016 and .019 x .025-in SS 

than Active Empower SLB.42 Our study is in accordance with these previous findings with the 

additional finding that the P-Emp bracket has similar FR as a P-Dmn bracket. To date, there are 

no studies that have compared this many contemporary Passive SLBs in terms of FR. 

Each of the Active SLBs demonstrated a unique FR profile throughout the archwire 

sequencing. All of the Active SLBs acted passively with the tested round NiTi wires. The A-Vic 

bracket acted passively until it engaged on the .017 x .025-in NiTi wire and then maintained a 

consistent FR similar to the A-Spd bracket on .017 x .025, .019 x .025, and .021 x .025-in 

rectangular wires. The A-Spd bracket was the only Active SLB to engage the .018 x .018 square 

and .016 x .022-in rectangular NiTi wires. It has been reported that the A-Spd bracket has the 

greatest amount of FR compared to Passive Damon 3MX, Active SLB Time2 and In-Ovation R.41 

The limitation of this previous study was that it did not test conventional twin brackets with 

elastomeric ligatures to gain relativity of their results.  

Our findings indicate that the A-Emp bracket has the greatest amount of FR once .019 x 

.025 and .021 x .025-in NiTi is engaged. This significantly increased FR was greater than control 

C-Vic brackets and approximately twice as much FR as that found in the A-Vic or A-Spd. Prior to 

these full size NiTi wires, the A-Emp bracket initiated FR engagement on .020 x .020-in square 

and .017 x .025-in rectangular NiTi and had reduced levels of FR compared to controls. The A-

Emp bracket acted similar to Passive SLBs on tested round, .018 x .018, and .016 x .022-in NiTi 

wires. Certainly, the Active SLB systems have unique FR profiles when compared to each other 

and to conventional twin brackets with elastomers, or Passive SLBs. The findings suggest an 

ability to utilize low FR passive mechanics with round and moderately sized square or rectangular 
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archwires and then increase FR engagement to express first- and third-order bracket 

prescriptions using larger dimension rectangular wires should the clinician require it. 

 

4.4 Clinical Applications 

There are many proponents of both passive and active biomechanics in orthodontics. This 

study assists the knowledge base for both of these clinical groups. To the proponents of 

completely Passive SLBs, this study demonstrates that in terms of FR, there exist many similar 

options to choose from in terms of Passive SLBs. The FR-free clinician will ultimately have to make 

their choice of Passive SLB based on cost, comfort, debond rate, durability, and ability to finish 

cases well with prescription expression. For the proponents of Active SLBs, this study 

demonstrates the unique subtleties between bracket systems in terms of FR and the ability to 

begin archwire engagement. Knowledge of the present study should allow the Active SLB clinician 

to distinctly utilize both FR-free and active-FR biomechanics while progressing through the stages 

of orthodontic treatment.  

The straight wire appliance was developed by Andrews to minimize archwire bending 

during finishing. This is accomplished by integrating first-, second-, and third-order prescription 

into the bracket itself. The prescription can only be realized with full engagement of the archwire 

into the base of the slot. With SLBs, the clinician needs to understand the system that they are 

utilizing in terms of when their archwires begin expressing the bracket prescription. Clinically, 

torque expression take time to express. A clinician that switches from one system to another 

must realize that the early active phase on NiTi archwires with one SLB may not translate to the 

same archwire with another bracket system. In this case, the clinician would observe lack of 

torque expression and likely blame the bracket when in reality, this issue lies with a lack of 

understanding in archwire progression. Ultimately, this defeats the purpose of the straight wire 

appliance, and the clinician must bend the archwire in order to finish the case appropriately, 

thereby decreasing efficiency. 
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4.5 Limitations of this Study 

The major shortfall of this study is that the in vitro linear experimental testing fixture does 

not mimic the dynamic interactions that occur intra-orally between orthodontic brackets and 

archwire. Due to the intricate multitude of complexities occurring in 3-dimensions of the 

biological intraoral environment, this was certainly not an attempt to replicate the biological 

processes created by the bone/periodontal ligament/cementum interface. Rather, this study was 

designed to observe the classical FR between the bracket-wire interface, and as a result archwire 

engagement, by removing as many confounding variables as possible. 

 

4.6 Strengths of this Study 

A strength of this study was the design and fabrication of the custom-made mounting 

apparatus used with the Instron testing machine. Minor imperfections in mounting would have 

led to disproportionately greater FR values being recorded. The precise mounting of brackets and 

archwires allowed for the exclusion of differences in bracket prescription between systems to be 

realized, such that the true dissimilarities of bracket FR could be examined.  

The primary strength of this study was the evaluation of a multitude of bracket systems 

along with a comprehensive examination of archwires. To date, there have been no published 

reports examining FR in this number of Passive SLB systems. The evaluation of Active SLBs with a 

multitude of archwires allowed for the distinct differences of engagement points to be explored 

between bracket systems.  

 

4.7 Suggestions for Future Research 

Future torque studies would provide insightful information that would assist in the proper 

evaluation of contemporary SLBs. Clinical control is improved with knowledge of when the 

bracket is operating in a passive and active state, as well as knowledge of when and how much 

torque expression is being transmitted with the appliance. Ultimately, alternative factors such as 

cost, durability, bond strength, patient comfort, bracket size and aesthetics as well as many other 

considerations are taken into account by the clinical practitioner when choosing an appliance 
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system. All future studies that evaluate the above-mentioned factors would assist the 

practitioner in selecting an appliance that they can use with clinical confidence and efficiency.  
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Chapter 5 
Conclusions 

 

1. Passive SLBs produce significantly less FR (close to zero) than traditional twin brackets on 

all wire sizes, in vitro. 

2. Passive SLBs produce similar FR to one another (close to zero) on all wire sizes, in vitro. 

3. Active SLBs produce different FR patterns compared to traditional twin brackets on all 

wire sizes, in vitro. 

4. Active SLBs produce greater FR than Passive SLBs on the two largest rectangular archwires 

tested, in vitro. 

5. A distinct pattern of archwire initial engagement and FR exist for each Active SLB system, 

in vitro. 
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Appendix 1 
 

Raw Frictional Force (cN) Data for Control Brackets and Active SLBs 
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Appendix 2 

Raw Frictional Force (cN) Data for Passive SLBs 
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